Optimal Learning of Fuzzy Neural Network Using Artificial Immune Algorithm
نویسندگان
چکیده
Fuzzy logic, neural network, fuzzy-neural networks play an important role in the linguistic modeling of intelligent control and decision making in complex systems. The Fuzzy-Neural Network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes an Artificial Immune Algorithm (AIA) based optimal learning fuzzy-neural network (IM-FNN). The proposed learning scheme includes the discovery of the fuzzy-neural network structure which can handle linguistic knowledge and the tuning of the membership function of the fuzzy inference system is achieved by AIA. The learning algorithm of the IM-FNN is composed of two phases. The first phase is to find the initial membership functions of the fuzzy neural network model. In the second phase, immune algorithm is used for tuning the membership functions of the proposed model. This paper also suggests techniques in determining the values of the steadystate equivalent circuit parameters of a three-phase squirrel-cage induction machine using immune algorithm.
منابع مشابه
Solving Fuzzy Equations Using Neural Nets with a New Learning Algorithm
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...
متن کاملSolving Fuzzy Equations Using Neural Nets with a New Learning Algorithm
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...
متن کاملOutlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means
One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...
متن کاملNumerical solution of fuzzy differential equations under generalized differentiability by fuzzy neural network
In this paper, we interpret a fuzzy differential equation by using the strongly generalized differentiability concept. Utilizing the Generalized characterization Theorem. Then a novel hybrid method based on learning algorithm of fuzzy neural network for the solution of differential equation with fuzzy initial value is presented. Here neural network is considered as a part of large eld called ne...
متن کاملCredit Card Fraud Detection using Data mining and Statistical Methods
Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...
متن کامل